

Data races
when writing to a db

without locks

3

Introduction
Who am I?

● Denis Furian

● previously Chalmers student (MPALG 2017–2020)

● nowadays working at Opera in Gothenburg

○ Android developer some projects ago

○ now back end engineer for GX.games

4

Introduction
Opera

● founded in Norway 1995

● 1997: first browser (Opera 2.1 for Windows)

● 2005: browser for mobile phones (Opera Mini)

● 2019: new browser for gamers (Opera GX)

● 2021: acquired YoYo Games and GameMaker

● 2022: launch of GameMaker storefront GX.games

● 2023: launch of mods support for Opera GX

Collection of games created with GameMaker

☞ game demos

☞ full games with player challenges

☞ multiplayer games

5

GX.games

6

GX.games
FRONT END

BACK END

● the user interface

● the game(s) you play

● other client-side things

in short: what you see on screen

● sign up/authentication

● profile updates

● data base operations

● 3rd-party services

and other server-side stuff

7

GX.games
FRONT END

BACK END

● the user interface

● the game(s) you play

● other client-side things

in short: what you see on screen

data base

several Java layers

auth

file storage

…

GX.games back end BACK END

data base

several Java layers

auth

file storage

…

8

API call

● REST architecture

● request method

● request headers

● request path

● (maybe) request body

● (maybe) parameters

Processing the request:

● validate everything in the request

● carry out all necessary operations

● carry out side effects

● return something

GX.games back end BACK END

data base

several Java layers

auth

file storage

…

9

Processing the request:

● validate everything in the request

● carry out all necessary operations

● carry out side effects

● return something
“something”

● successful response

● error response

BACK END

data base

several Java layers

auth

file storage

…

10

GX.games back end
The BE infrastructure, simplified:

• PostgreSQL data base: storing everything we need, e.g. games metadata

• Redis: temporary in-memory storage for e.g. current session, cache

• Several Java frameworks:

• Spring: handling transactions, object instantiations etc.

• AspectJ: aspect-oriented checks, e.g. validating arguments

• Hibernate: maps Java classes/methods to data base entities/queries

• Other Opera services, e.g. user authentication

• Several 3rd-party services for file storage, marketing communication etc.

11

GX.games back end
Today’s focus on:

data base and OO implementation

robustness against data races
“object-oriented”

12

PostgreSQL: tables and relations
A table:

• generally identifies an entity (user, game, score, mod etc.)

• contains data about that entity (user: name, email, birthdate, …)

• each table row is a separate entity

USER_ID NAME EMAIL BIRTHDATE

fc95-43f8-bc85 Emilia Emilsson emili@mail.se 2001-12-03

6081-4613-b547 Someone Elsson som1els@gmail.com 1998-03-16

bad9-4008-a292 Åså Vidarsson osv@mail.com 2004-09-27

… … … …

13

PostgreSQL: tables and relations
A relation:

• is a relationship between two entities:

• straightforward example: a game can have many challenges

GAME_ID TITLE

e88a-4bb8-ab57 Resident Emil

0392-4148-a0bb Mario Super

… …

CHALLENGE_ID GAME_ID DESCRIPTION

20b6-4b90-8cc3 e88a-4bb8-ab57 Beat the game

460f-4dbf-818d 0392-4148-a0bb Go to a pub crawl

969e-45d4-b622 0392-4148-a0bb Spend 1000 kr in cider

… … …

foreign key

14

PostgreSQL: tables and relations
A relation:

• is a relationship between two entities:

• straightforward example: a game can have many challenges

• slightly more complex: a user can have friends

USER_ID NAME

fc95-43f8-bc85 Emilia Emilsson

6081-4613-b547 Someone Elsson

bad9-4008-a292 Åså Vidarsson

… …

USER_1_ID USER_2_ID DATE_ADDED

fc95-43f8-bc85 6081-4613-b547 2023-08-13

bad9-4008-a292 fc95-43f8-bc85 2023-10-02

… … …

a relationship can be a table

queried (i.e. you can look up the data in one or more tables)

updated (i.e. you can add/remove rows or edit a specific one)

joined together

deleted

modified (by e.g. adding constraints or altering columns)

15

PostgreSQL: operations with tables
Tables can be created

16

Hibernate: mapping tables
Table

● one or more columns

● each column has a type

● some columns have constraints

● some can reference other tables

Class

● one or more fields

● each field has a type

● some fields have complex types

public class Challenge {

 public String challengeId;

 public String gameId;

 public String description;

}

CHALLENGE_ID GAME_ID DESCRIPTION

… … …

public class Challenge {
 @Id @Column
 public String challengeId;
 @Column
 public String gameId;
 @Column
 public String description;

}

public class Challenge {
 @Id @Column
 public String challengeId;
 @Column
 public String gameId;
 @Column
 public String description;
 @ManyToOne @JoinColumn
 public Game game;
}

17

Hibernate: mapping operations
Repository class:

• each method is equivalent to a data base operation

• the method arguments (if any) become parameters

• the method return type will depend on the operation:

• if it’s a query, it might be an object (or a list of objects)

• otherwise, it might be the number of rows inserted/deleted/updated

How to implement all this?

18

Spring Data JPA library
• Implements repository classes under the hood

• Provides base operations off the bat

save(), delete(), findAll(), findById(String id), …

• Tools for creating db operations using keywords

Optional<Challenge> findFirstByGameIdOrderByNameAsc(String gameId);

• …or you can write your own SQL queries via annotations

@Query(“SELECT description FROM challenges WHERE game_id = :gameId”)

List<Challenge> foo(String gameId);

only return the first record
can return a record, or nothing search a specific column

sort A–Z based on another column

19

Now for a practical example
What we want to do:

• let’s allow a user to save one or more challenges as “favorites”;

• when a user views a challenge on GX.games, we should tell if it’s a favorite.

20

Now for a practical example
How do we do it?

1. we create a table for “favorites”

• it must contain information about the challenge, and the user!

2. we create an API for managing favorites

• users should be able to save a favorite

• they should also see if a given challenge is a favorite

21

Now for a practical example
1. Creating a table for favorites

☞ it must contain information about the challenge, and the user!

☞ plus a timestamp for when the challenge was saves as favorite

CHALLENGE_ID GAME_ID DESCRIPTION

20b6-4b90-8cc3 e88a-4bb8-ab57 Beat the game

460f-4dbf-818d 0392-4148-a0bb Go to a pub crawl

969e-45d4-b622 0392-4148-a0bb Spend 1000 kr in cider

… … …

USER_ID NAME EMAIL BIRTHDATE

fc95-43f8-bc85 Emilia Emilsson emili@mail.se 2001-12-03

6081-4613-b547 Someone Elsson som1els@gmail.com 1998-03-16

bad9-4008-a292 Åså Vidarsson osv@mail.com 2004-09-27

… … … …

FAVORITE_ID CHALLENGE_ID USER_ID DATE_SAVED

… … … …

22

Now for a practical example
1. Creating a table for favorites

☞ it must contain information about the challenge, and the user!

☞ plus a timestamp for when the challenge was saves as favorite

CHALLENGE_ID GAME_ID DESCRIPTION

20b6-4b90-8cc3 e88a-4bb8-ab57 Beat the game

460f-4dbf-818d 0392-4148-a0bb Go to a pub crawl

969e-45d4-b622 0392-4148-a0bb Spend 1000 kr in cider

… … …

USER_ID NAME EMAIL BIRTHDATE

fc95-43f8-bc85 Emilia Emilsson emili@mail.se 2001-12-03

6081-4613-b547 Someone Elsson som1els@gmail.com 1998-03-16

bad9-4008-a292 Åså Vidarsson osv@mail.com 2004-09-27

… … … …

FAVORITE_ID CHALLENGE_ID USER_ID DATE_SAVED

… … … …

public class Favorite {
 @Id @Column(name = “favorite_id”)
 public String favoriteId;

 @Column(name = “challenge_id”)
 public String challengeId;

 @Column(name = “user_id”)
 public String userId;

 @Column(name = “date_saved”)
 public Timestamp dateSaved;
}

23

Now for a practical example
2. Creating the API

☞ need to save a challenge as favorite!

// Initialized by Spring.
@Autowired
private FavoriteRepository favoriteRepository;

// ...

// Create new entity class with the data we need.
Favorite newFavorite = new Favorite();
newFavorite.challengeId = myChallenge.challengeId;
newFavorite.userId = currentUser.userId;
newFavorite.dateSaved = Timestamp.now();

// Hibernate provides a method to save the new object to the db.
favoriteRepository.save(newFavorite);

repository class

entity class from
the last slide

24

Now for a practical example
2. Creating the API

☞ need to save a challenge as favorite!

☞ need to return info about favorite…

JSON response example:

✔ we can have Spring Data JPA take care of this!

Done! ✔
Let’s call it “saveFavorite”

{
 “isFavorite”: true | false,
 “dateSaved”: “2023-10-13” | null
}

25

Now for a practical example
2. Creating the API

☞ need to save a challenge as favorite!

☞ need to return info about favorite…

JSON response example:

✔ we can have Spring Data JPA take care of this!

Done! ✔
Let’s call it “saveFavorite”

{
 “isFavorite”: true | false,
 “dateSaved”: “2023-10-13” | null
}

// Initialized by Spring.
@Autowired
private FavoriteRepository favoriteRepository;

// ...

// Look up a favorite challenge, if it exists.
Optional<Favorite> maybeFavorite =
 favoriteRepository
 .findByChallengeIdAndUserId(
 myChallenge.challengeId, currentUser.userId);

Response response = new Response();
if (maybeFavorite.isPresent()) {
 response.isFavorite = true;
 response.dateSaved = maybeFavorite.get().dateSaved;
} else {
 response.isFavorite = false;
}
return response;

repository class
(same as before)

query generated
using keywords

26

Now for a practical example
2. Creating the API

☞ need to save a challenge as favorite!

☞ need to return info about favorite…

Done! ✔
Let’s call it “saveFavorite”

Also done! ✔
Let’s call it “getFavorite”

27

Now for a practical example
How will the API work?FRONT END

BACK END
saveFavorite

getFavorite

user wants to save
a challenge as favorite

FE wants to check if user has
a challenge saved as favorite

we create a favorite
and save it to our data base

we search the “favorites” table for a
combination of (user, challenge) and

then we return information about it
(or we just say that it’s not a favorite)

28

Now for a practical example
How will the API work?FRONT END

BACK END

user wants to save
a challenge as favorite

we create a favorite
and save it to our data base

saveFavorite

again
and again
and again
and again

now with data races!FAVORITE_ID CHALLENGE_ID USER_ID DATE_SAVED

23bd-4cb0-b1ff c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

b155-4cd0-b570 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

3a0b-4b74-b8f0 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

71e7-4462-a3a3 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

7e46-484e-9daa c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

c7ab-4940-94a3 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

Real life scenario:
adding data races

29

Now for a practical example
How will the API work?FRONT END

BACK END

user wants to save
a challenge as favorite

we create a favorite
and save it to our data base

saveFavorite

again
and again
and again
and again

now with data races!

30

Now for a practical example
How will the API work?FRONT END

BACK END

user wants to save
a challenge as favorite

we create a favorite
and save it to our data base

saveFavorite

again
and again
and again
and again

now with data races!FAVORITE_ID CHALLENGE_ID USER_ID DATE_SAVED

23bd-4cb0-b1ff c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

b155-4cd0-b570 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

3a0b-4b74-b8f0 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

71e7-4462-a3a3 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

7e46-484e-9daa c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

c7ab-4940-94a3 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

31

Now for a practical example
How will the API work?FRONT END

BACK END
getFavorite

FE wants to check if user has
a challenge saved as favorite

we search the “favorites” table for
a combination of (user, challenge)

32

Now for a practical example
How will the API work?FRONT END

BACK END
getFavorite

FE wants to check if user has
a challenge saved as favorite

we search the “favorites” table for
a combination of (user, challenge)

// Initialized by Spring.
@Autowired
private FavoriteRepository favoriteRepository;

// ...

// Look up a favorite challenge, if it exists.
Optional<Favorite> maybeFavorite =
 favoriteRepository
 .findByChallengeIdAndUserId(
 myChallenge.challengeId, currentUser.userId);

Response response = new Response();
if (maybeFavorite.isPresent()) {
 response.isFavorite = true;
 response.dateSaved = maybeFavorite.get().dateSaved;
} else {
 response.isFavorite = false;
}
return response;

33

Something has gone wrong!
What’s going on?

● we are looking for one favorite entry at most

● Spring “converts” this to an Optional<Favorite>

● however, there are several entries because of the data race!

● Spring can’t convert a list of records to an Optional

↳ this triggers a casting exception

☞ this snowballs into a 500 internal server error

⚠ no mention of data races or duplicate favorite entries!

An Optional<T> object can contain an
instance of type T, or it can be empty.

34

Handling a data race
a. fix it when it happens

in other words: delete duplicate favorites

• have to detect them in the first place

• not sustainable

b. prevent it in the first place

have to make sure only one record exists for every combination (user, challenge)

we should introduce locks to our code base

35

Using locks on the Favorites table
SQL data bases use a set of keywords for implementing locks

• SELECT ... FOR SHARE → locks concurrent writes, but allow reads

• SELECT ... FOR UPDATE → locks concurrent reads and writes

• …

On PostgreSQL, this locks the selected record(s)and
prevents other operations until the transaction is finished.

36

Using locks provided by Spring
Repository classes can use keywords for generated query methods

• just add “forUpdate” to method name:

@Lock(PESSIMISTIC_WRITE)
Optional<User> findForUpdateByUserId(String userId);

Spring provides an “EntityManager” class to manage entity updates

• this way, we can get a lock on an object:

User currentUser = getCurrentUser();
entityManager.refresh(currentUser, PESSIMISTIC_WRITE);

37

Using locks provided by Spring
Repository classes can use keywords for generated query methods

• just add “forUpdate” to method name:

@Lock(PESSIMISTIC_WRITE)
Optional<User> findForUpdateByUserId(String userId);

Spring provides an “EntityManager” class to manage entity updates

• this way, we can get a lock on an object:

User currentUser = getCurrentUser();
entityManager.refresh(currentUser, PESSIMISTIC_WRITE);

We can specify the type of lock we want:

● “Pessimistic” locks try and avoid
conflicts by locking a row entirely;

● “Optimistic” locks check for conflicts
before committing a transaction, and
any conflict will cause a rollback.

38

Using locks… But where?
• On a query?

• On a repository method?

• On an object?

The real question is: what concurrent update are we trying to prevent?

☞ we want to prevent a user from saving the same challenge more than once

39

Using locks on User entities
1. Update “User” class to have a list of favorites!

How?

Using the @OneToMany annotation:

2. Lock the user object before creating a new favorite.

By using the EntityManager we can prevent concurrent updates on the whole object,

including the new list of favorites.

public class User {
 // ...

 @OneToMany
 public List<Favorite> favorites;
}

40

Saving a favorite, revisited
// Initialized by Spring.
@Autowired
private FavoriteRepository favoriteRepository;

// ...

// Create new entity class with the data we need.
Favorite newFavorite = new Favorite();
newFavorite.challengeId = myChallenge.challengeId;
newFavorite.userId = currentUser.userId;
newFavorite.dateSaved = Timestamp.now();

// Hibernate provides a method to save the new object to the db.
favoriteRepository.save(newFavorite);

Add the EntityManager

Refactor this code: we are
locking the currentUser
and adding a new entry to
currentUser.favorites

41

Saving a favorite, revisited
// Initialized by Spring.
@Autowired
private UserRepository userRepository;
@Autowired
private EntityManager entityManager;

// ...

// Lock the user object to prevent concurrent updates.
entityManager.refresh(currentUser, PESSIMISTIC_WRITE);

// Create new entity class just like before.
Favorite newFavorite = new Favorite();
newFavorite.challengeId = myChallenge.challengeId;
newFavorite.userId = currentUser.userId;
newFavorite.dateSaved = Timestamp.now();

// Save the user (and the new favorite) to the db.
currentUser.favorites.add(newFavorite);
userRepository.save(currentUser);

42

Hindsight
Could we have prevented this?

Of course 🥲
Uniqueness constraint → by making the combination of (user_id, challenge_id)

unique, we can discard any duplicates automatically!

We can also “promote” the combination of (user_id, challenge_id) to be
primary key instead of favorite_id, since a primary key is always unique!

This will prevent duplicates when creating favorites… But we
will still need a lock if we want to update an existing favorite.

43

Hindsight
Should we make (user_id, challenge_id) unique?

• one more failsafe

• it makes sense for the table

Sure! 👍

Different cases will require different solutions:

● what entity should be locked

● what kind of lock should be used

optimistic vs pessimistic

query vs code

44

More info
• PostgreSQL → https://www.postgresql.org/

• Java resources

• Hibernate → https://hibernate.org/

• Spring → https://spring.io/

• Opera

• GX browser → https://www.opera.com/gx

• GX.games → https://gx.games/

Thanks for
watching!

Denis Furian
denisf@opera.com

