


Data races
when writing to a db

without locks
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Introduction
Who am I?

● Denis Furian

● previously Chalmers student (MPALG 2017–2020)

● nowadays working at Opera in Gothenburg

○ Android developer some projects ago

○ now back end engineer for GX.games
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Introduction
Opera

● founded in Norway 1995

● 1997: first browser (Opera 2.1 for Windows)

● 2005: browser for mobile phones (Opera Mini)

● 2019: new browser for gamers (Opera GX)

● 2021: acquired YoYo Games and GameMaker

● 2022: launch of GameMaker storefront GX.games

● 2023: launch of mods support for Opera GX



Collection of games created with GameMaker

☞ game demos

☞ full games with player challenges

☞ multiplayer games
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GX.games
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GX.games
FRONT END

BACK END

● the user interface

● the game(s) you play

● other client-side things

in short: what you see on screen

● sign up/authentication

● profile updates

● data base operations

● 3rd-party services

and other server-side stuff
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GX.games
FRONT END

BACK END

● the user interface

● the game(s) you play

● other client-side things

in short: what you see on screen

data base

several Java layers

auth

file storage

…



GX.games back end BACK END

data base

several Java layers

auth

file storage

…
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API call

● REST architecture

● request method

● request headers

● request path

● (maybe) request body

● (maybe) parameters

Processing the request: 

● validate everything in the request

● carry out all necessary operations

● carry out side effects

● return something



GX.games back end BACK END

data base

several Java layers

auth

file storage

…
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Processing the request: 

● validate everything in the request

● carry out all necessary operations

● carry out side effects

● return something
“something”

● successful response

● error response



BACK END

data base

several Java layers

auth

file storage

…
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GX.games back end
The BE infrastructure, simplified:

• PostgreSQL data base: storing everything we need, e.g. games metadata

• Redis: temporary in-memory storage for e.g. current session, cache

• Several Java frameworks:

• Spring: handling transactions, object instantiations etc.

• AspectJ: aspect-oriented checks, e.g. validating arguments

• Hibernate: maps Java classes/methods to data base entities/queries

• Other Opera services, e.g. user authentication

• Several 3rd-party services for file storage, marketing communication etc.
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GX.games back end
Today’s focus on:

data base and OO implementation

robustness against data races
“object-oriented”
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PostgreSQL: tables and relations
A table:

• generally identifies an entity (user, game, score, mod etc.)

• contains data about that entity (user: name, email, birthdate, …)

• each table row is a separate entity

USER_ID NAME EMAIL BIRTHDATE

fc95-43f8-bc85 Emilia Emilsson emili@mail.se 2001-12-03

6081-4613-b547 Someone Elsson som1els@gmail.com 1998-03-16

bad9-4008-a292 Åså Vidarsson osv@mail.com 2004-09-27

… … … …
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PostgreSQL: tables and relations
A relation:

• is a relationship between two entities:

• straightforward example: a game can have many challenges

GAME_ID TITLE

e88a-4bb8-ab57 Resident Emil

0392-4148-a0bb Mario Super

… …

CHALLENGE_ID GAME_ID DESCRIPTION

20b6-4b90-8cc3 e88a-4bb8-ab57 Beat the game

460f-4dbf-818d 0392-4148-a0bb Go to a pub crawl

969e-45d4-b622 0392-4148-a0bb Spend 1000 kr in cider

… … …

foreign key
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PostgreSQL: tables and relations
A relation:

• is a relationship between two entities:

• straightforward example: a game can have many challenges

• slightly more complex: a user can have friends

USER_ID NAME

fc95-43f8-bc85 Emilia Emilsson

6081-4613-b547 Someone Elsson

bad9-4008-a292 Åså Vidarsson

… …

USER_1_ID USER_2_ID DATE_ADDED

fc95-43f8-bc85 6081-4613-b547 2023-08-13

bad9-4008-a292 fc95-43f8-bc85 2023-10-02

… … …

a relationship can be a table



queried (i.e. you can look up the data in one or more tables)

updated (i.e. you can add/remove rows or edit a specific one)

joined together

deleted

modified (by e.g. adding constraints or altering columns)
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PostgreSQL: operations with tables
Tables can be created
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Hibernate: mapping tables
Table

● one or more columns

● each column has a type

● some columns have constraints

● some can reference other tables

Class

● one or more fields

● each field has a type

● some fields have complex types

public class Challenge {

  public String challengeId;

  public String gameId;

  public String description;

}

CHALLENGE_ID GAME_ID DESCRIPTION

… … …

public class Challenge {
  @Id @Column
  public String challengeId;
  @Column
  public String gameId;
  @Column
  public String description;

}

public class Challenge {
  @Id @Column
  public String challengeId;
  @Column
  public String gameId;
  @Column
  public String description;
  @ManyToOne @JoinColumn
  public Game game;
}
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Hibernate: mapping operations
Repository class:

• each method is equivalent to a data base operation

• the method arguments (if any) become parameters

• the method return type will depend on the operation:

• if it’s a query, it might be an object (or a list of objects)

• otherwise, it might be the number of rows inserted/deleted/updated

How to implement all this?
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Spring Data JPA library
• Implements repository classes under the hood

• Provides base operations off the bat

save(), delete(), findAll(), findById(String id), …

• Tools for creating db operations using keywords

Optional<Challenge> findFirstByGameIdOrderByNameAsc(String gameId);

• …or you can write your own SQL queries via annotations

@Query(“SELECT description FROM challenges WHERE game_id = :gameId”)

List<Challenge> foo(String gameId);

only return the first record
can return a record, or nothing search a specific column

sort A–Z based on another column
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Now for a practical example
What we want to do:

• let’s allow a user to save one or more challenges as “favorites”;

• when a user views a challenge on GX.games, we should tell if it’s a favorite.



20

Now for a practical example
How do we do it?

1. we create a table for “favorites”

• it must contain information about the challenge, and the user!

2. we create an API for managing favorites

• users should be able to save a favorite

• they should also see if a given challenge is a favorite
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Now for a practical example
1. Creating a table for favorites

☞ it must contain information about the challenge, and the user!

☞ plus a timestamp for when the challenge was saves as favorite

CHALLENGE_ID GAME_ID DESCRIPTION

20b6-4b90-8cc3 e88a-4bb8-ab57 Beat the game

460f-4dbf-818d 0392-4148-a0bb Go to a pub crawl

969e-45d4-b622 0392-4148-a0bb Spend 1000 kr in cider

… … …

USER_ID NAME EMAIL BIRTHDATE

fc95-43f8-bc85 Emilia Emilsson emili@mail.se 2001-12-03

6081-4613-b547 Someone Elsson som1els@gmail.com 1998-03-16

bad9-4008-a292 Åså Vidarsson osv@mail.com 2004-09-27

… … … …

FAVORITE_ID CHALLENGE_ID USER_ID DATE_SAVED

… … … …
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Now for a practical example
1. Creating a table for favorites

☞ it must contain information about the challenge, and the user!

☞ plus a timestamp for when the challenge was saves as favorite

CHALLENGE_ID GAME_ID DESCRIPTION

20b6-4b90-8cc3 e88a-4bb8-ab57 Beat the game

460f-4dbf-818d 0392-4148-a0bb Go to a pub crawl

969e-45d4-b622 0392-4148-a0bb Spend 1000 kr in cider

… … …

USER_ID NAME EMAIL BIRTHDATE

fc95-43f8-bc85 Emilia Emilsson emili@mail.se 2001-12-03

6081-4613-b547 Someone Elsson som1els@gmail.com 1998-03-16

bad9-4008-a292 Åså Vidarsson osv@mail.com 2004-09-27

… … … …

FAVORITE_ID CHALLENGE_ID USER_ID DATE_SAVED

… … … …

public class Favorite {
  @Id @Column(name = “favorite_id”)
  public String favoriteId;

  @Column(name = “challenge_id”)
  public String challengeId;

  @Column(name = “user_id”)
  public String userId;

  @Column(name = “date_saved”)
  public Timestamp dateSaved;
}
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Now for a practical example
2. Creating the API

☞ need to save a challenge as favorite!

// Initialized by Spring.
@Autowired
private FavoriteRepository favoriteRepository;

// ...

// Create new entity class with the data we need.
Favorite newFavorite = new Favorite();
newFavorite.challengeId = myChallenge.challengeId;
newFavorite.userId = currentUser.userId;
newFavorite.dateSaved = Timestamp.now();

// Hibernate provides a method to save the new object to the db.
favoriteRepository.save(newFavorite);

repository class

entity class from 
the last slide
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Now for a practical example
2. Creating the API

☞ need to save a challenge as favorite!

☞ need to return info about favorite…

JSON response example:

✔ we can have Spring Data JPA take care of this!

Done! ✔
Let’s call it “saveFavorite”

{
  “isFavorite”: true | false,
  “dateSaved”: “2023-10-13” | null
}
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Now for a practical example
2. Creating the API

☞ need to save a challenge as favorite!

☞ need to return info about favorite…

JSON response example:

✔ we can have Spring Data JPA take care of this!

Done! ✔
Let’s call it “saveFavorite”

{
  “isFavorite”: true | false,
  “dateSaved”: “2023-10-13” | null
}

// Initialized by Spring.
@Autowired
private FavoriteRepository favoriteRepository;

// ...

// Look up a favorite challenge, if it exists.
Optional<Favorite> maybeFavorite =
    favoriteRepository
        .findByChallengeIdAndUserId(
            myChallenge.challengeId, currentUser.userId);

Response response = new Response();
if (maybeFavorite.isPresent()) {
  response.isFavorite = true;
  response.dateSaved = maybeFavorite.get().dateSaved;
} else {
  response.isFavorite = false;
}
return response;

repository class
(same as before)

query generated 
using keywords
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Now for a practical example
2. Creating the API

☞ need to save a challenge as favorite!

☞ need to return info about favorite…

Done! ✔
Let’s call it “saveFavorite”

Also done! ✔
Let’s call it “getFavorite”
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Now for a practical example
How will the API work?FRONT END

BACK END
saveFavorite

getFavorite

user wants to save
a challenge as favorite

FE wants to check if user has
a challenge saved as favorite

we create a favorite
and save it to our data base

we search the “favorites” table for a 
combination of (user, challenge) and 

then we return information about it
(or we just say that it’s not a favorite)
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Now for a practical example
How will the API work?FRONT END

BACK END

user wants to save
a challenge as favorite

we create a favorite
and save it to our data base

saveFavorite

again
and again
and again
and again

now with data races!FAVORITE_ID CHALLENGE_ID USER_ID DATE_SAVED

23bd-4cb0-b1ff c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

b155-4cd0-b570 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

3a0b-4b74-b8f0 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

71e7-4462-a3a3 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

7e46-484e-9daa c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

c7ab-4940-94a3 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

Real life scenario:
adding data races
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Now for a practical example
How will the API work?FRONT END

BACK END

user wants to save
a challenge as favorite

we create a favorite
and save it to our data base

saveFavorite

again
and again
and again
and again

now with data races!
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Now for a practical example
How will the API work?FRONT END

BACK END

user wants to save
a challenge as favorite

we create a favorite
and save it to our data base

saveFavorite

again
and again
and again
and again

now with data races!FAVORITE_ID CHALLENGE_ID USER_ID DATE_SAVED

23bd-4cb0-b1ff c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

b155-4cd0-b570 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

3a0b-4b74-b8f0 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

71e7-4462-a3a3 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

7e46-484e-9daa c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13

c7ab-4940-94a3 c55a-497c-89c8 95c8-4dc7-83a7 2023-10-13
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Now for a practical example
How will the API work?FRONT END

BACK END
getFavorite

FE wants to check if user has
a challenge saved as favorite

we search the “favorites” table for
a combination of (user, challenge)
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Now for a practical example
How will the API work?FRONT END

BACK END
getFavorite

FE wants to check if user has
a challenge saved as favorite

we search the “favorites” table for
a combination of (user, challenge)

// Initialized by Spring.
@Autowired
private FavoriteRepository favoriteRepository;

// ...

// Look up a favorite challenge, if it exists.
Optional<Favorite> maybeFavorite =
    favoriteRepository
        .findByChallengeIdAndUserId(
            myChallenge.challengeId, currentUser.userId);

Response response = new Response();
if (maybeFavorite.isPresent()) {
  response.isFavorite = true;
  response.dateSaved = maybeFavorite.get().dateSaved;
} else {
  response.isFavorite = false;
}
return response;



33

Something has gone wrong!
What’s going on?

● we are looking for one favorite entry at most

● Spring “converts” this to an Optional<Favorite>

● however, there are several entries because of the data race!

● Spring can’t convert a list of records to an Optional

↳ this triggers a casting exception

☞ this snowballs into a 500 internal server error

⚠ no mention of data races or duplicate favorite entries!

An Optional<T> object can contain an 
instance of type T, or it can be empty.
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Handling a data race
a. fix it when it happens

in other words: delete duplicate favorites

• have to detect them in the first place

• not sustainable 

b. prevent it in the first place

have to make sure only one record exists for every combination (user, challenge)

we should introduce locks to our code base
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Using locks on the Favorites table
SQL data bases use a set of keywords for implementing locks

• SELECT ... FOR SHARE → locks concurrent writes, but allow reads

• SELECT ... FOR UPDATE → locks concurrent reads and writes

• …

On PostgreSQL, this locks the selected record(s)and 
prevents other operations until the transaction is finished.
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Using locks provided by Spring
Repository classes can use keywords for generated query methods

• just add “forUpdate” to method name:

@Lock(PESSIMISTIC_WRITE)
Optional<User> findForUpdateByUserId(String userId);

Spring provides an “EntityManager” class to manage entity updates

• this way, we can get a lock on an object:

User currentUser = getCurrentUser();
entityManager.refresh(currentUser, PESSIMISTIC_WRITE);
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Using locks provided by Spring
Repository classes can use keywords for generated query methods

• just add “forUpdate” to method name:

@Lock(PESSIMISTIC_WRITE)
Optional<User> findForUpdateByUserId(String userId);

Spring provides an “EntityManager” class to manage entity updates

• this way, we can get a lock on an object:

User currentUser = getCurrentUser();
entityManager.refresh(currentUser, PESSIMISTIC_WRITE);

We can specify the type of lock we want:

● “Pessimistic” locks try and avoid 
conflicts by locking a row entirely;

● “Optimistic” locks check for conflicts 
before committing a transaction, and 
any conflict will cause a rollback.
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Using locks… But where?
• On a query?

• On a repository method?

• On an object?

The real question is: what concurrent update are we trying to prevent?

☞ we want to prevent a user from saving the same challenge more than once
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Using locks on User entities
1. Update “User” class to have a list of favorites!

How?

Using the @OneToMany annotation:

2. Lock the user object before creating a new favorite.

By using the EntityManager we can prevent concurrent updates on the whole object, 

including the new list of favorites.

public class User {
  // ...

  @OneToMany
  public List<Favorite> favorites;
}



40

Saving a favorite, revisited
// Initialized by Spring.
@Autowired
private FavoriteRepository favoriteRepository;

// ...

// Create new entity class with the data we need.
Favorite newFavorite = new Favorite();
newFavorite.challengeId = myChallenge.challengeId;
newFavorite.userId = currentUser.userId;
newFavorite.dateSaved = Timestamp.now();

// Hibernate provides a method to save the new object to the db.
favoriteRepository.save(newFavorite);

Add the EntityManager

Refactor this code: we are 
locking the currentUser 
and adding a new entry to 
currentUser.favorites
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Saving a favorite, revisited
// Initialized by Spring.
@Autowired
private UserRepository userRepository;
@Autowired
private EntityManager entityManager;

// ...

// Lock the user object to prevent concurrent updates.
entityManager.refresh(currentUser, PESSIMISTIC_WRITE);

// Create new entity class just like before.
Favorite newFavorite = new Favorite();
newFavorite.challengeId = myChallenge.challengeId;
newFavorite.userId = currentUser.userId;
newFavorite.dateSaved = Timestamp.now();

// Save the user (and the new favorite) to the db.
currentUser.favorites.add(newFavorite);
userRepository.save(currentUser);
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Hindsight
Could we have prevented this?

Of course 🥲
Uniqueness constraint → by making the combination of (user_id, challenge_id) 

unique, we can discard any duplicates automatically!

We can also “promote” the combination of (user_id, challenge_id) to be 
primary key instead of favorite_id, since a primary key is always unique!

This will prevent duplicates when creating favorites… But we
will still need a lock if we want to update an existing favorite.
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Hindsight
Should we make (user_id, challenge_id) unique?

• one more failsafe

• it makes sense for the table

Sure! 👍

Different cases will require different solutions:

● what entity should be locked

● what kind of lock should be used

optimistic vs pessimistic

query vs code
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More info
• PostgreSQL → https://www.postgresql.org/

• Java resources

• Hibernate → https://hibernate.org/

• Spring → https://spring.io/

• Opera

• GX browser → https://www.opera.com/gx

• GX.games → https://gx.games/



Thanks for
watching!

Denis Furian
denisf@opera.com


